Respuesta :

Answer:

k ≈ 0.34

Step-by-step explanation:

Using the law of logarithms

log [tex]x^{n}[/tex] ⇔ nlogx

given N = [tex]N_{0}[/tex] [tex]e^{kt}[/tex]

Where [tex]N_{0}[/tex] is the initial amount

here N = 7500, t = 10 and [tex]N_{0}[/tex] = 250, hence

7500 = 250 [tex]e^{10k}[/tex] ( divide both sides by 250 )

[tex]e^{10k}[/tex] = 30 ( take the ln of both sides )

ln [tex]e^{10k}[/tex] = ln 30

10k lne = ln 30 [ lne = 1 ]

k = [tex]\frac{ln30}{10}[/tex] ≈ 0.34



ACCESS MORE