Respuesta :

Answer:

6.  BM = 33

7.  M is the bisector; BM = 54 1/3

8. 1.8 cm

Step-by-step explanation:

6. The segments left and right of point M have a vertical hash mark indicating they are the same length. Then ...

  4x +13 = 3x +18

  x = 5 . . . . . . . . . . . subtract 3x+13 from both sides of the equation

  BM = 3x+18 = 3·5 +18 = 33

7. As in problem 6, the hash marks indicate that M is the midpoint between A and B, so M bisects AB.

  4x +1 = 7x - 39  . . . . . . . segments either side of M have the same length

  40 = 3x . . . . . . . . . subtract 4x-39 from both sides of the equation

  40/3 = x . . . . . . . . . divide by 3

  BM = 7x -39 = 7(40/3) -39 = (280 -117)/3 = 163/3

  BM = 54 1/3

8. Read the scale. The segment extends from 5 to 6.8, so has a length of ...

  6.8 -5 = 1.8 . . . cm

Ver imagen sqdancefan
ACCESS MORE