What is 7P4
A: 28
B: 35
C: 210
D: 840
![What is 7P4 A 28 B 35 C 210 D 840 class=](https://us-static.z-dn.net/files/d6c/036682d3cda6dc1344a0f857e1fc0a01.png)
Answer:
D
Step-by-step explanation:
using the definition of n[tex]P_{r}[/tex] = [tex]\frac{n!}{(n-r)!}[/tex]
where n! = n(n- 1)(n - 2)......× 3 × 2 × 1
here n = 7 and r = 4, hence
7[tex]P_{4}[/tex]
= [tex]\frac{7!}{3!}[/tex]
= [tex]\frac{7(6)(5)(4)(3)(2)(1)}{3(2)(1)}[/tex] ← cancel 3 × 2 × 1 leaving
7[tex]P_{4}[/tex] = 7 × 6 × 5 × 4 = 840 → D
The expression is an illustration of permutation.
The result of [tex]\mathbf{^7P_4}[/tex] is (d) 840
The expression is given as:
[tex]\mathbf{^7P_4}[/tex]
The formula of permutation is:
[tex]\mathbf{^nP_r = \frac{n!}{(n-r)!}}[/tex]
So, we have:
[tex]\mathbf{^7P_4 = \frac{7!}{(7-4)!}}[/tex]
[tex]\mathbf{^7P_4 = \frac{7!}{3!}}[/tex]
Expand
[tex]\mathbf{^7P_4 = \frac{7 \times 6 \times 5 \times 4 \times 3!}{3!}}[/tex]
[tex]\mathbf{^7P_4 = 7 \times 6 \times 5 \times 4 }[/tex]
[tex]\mathbf{^7P_4 = 840}[/tex]
Hence, the result of [tex]\mathbf{^7P_4}[/tex] is (d) 840
Read more about permutation at:
https://brainly.com/question/1216161