Please help me. I need help
![Please help me I need help class=](https://us-static.z-dn.net/files/ddf/1f4d7fb4fa6adfdeffe98c31d83b3ee1.jpg)
a. -(3√13)/13
The cosine can be found from the tangent by way of the secant.
tan(θ)² +1 = sec(θ)² = 1/cos(θ)²
Then ...
cos(θ) = ±1/√(tan(θ)² +1)
The cosine is negative in the second quadrant, so we will choose that sign.
cos(θ) = -1/√((-2/3)² +1) = -1/√(4/9 +1) = -1/√(13/9)
cos(θ) = -3/√13 = -(3√13)/13 . . . . . matches your selection A
Look at the first picture.
In Quadrant II tangent is negative and cosine is negative too.
We have:
[tex]\tan\theta=-\dfrac{2}{3}=\dfrac{2}{-3}[/tex]
therefore we have the point (-3, 2) → x = -3 and y = 2.
Calculate r:
[tex]r=\sqrt{(-3)^2+2^2}=\sqrt{9+4}=\sqrt{13}[/tex]
Calculate cosine:
[tex]\cos\theta=\dfrac{x}{r}\to\cos\theta=\dfrac{-3}{\sqrt{13}}\\\\\cos\theta=-\dfrac{3}{\sqrt{13}}\cdot\dfrac{\sqrt{13}}{\sqrt{13}}\\\\\cos\theta=-\dfrac{3\sqrt{13}}{13}[/tex]
Your answer is [tex]\boxed{a.\ -\dfrac{3\sqrt{13}}{13}}[/tex]