Calculate the distance between the center of the earth and the center of the moon at which the gravitational force exerted by the earth on the object is equal in magnitude to the force exerted by the moon ohhh the object

Respuesta :

Gravity Equation:
[tex]f = \frac{gm _{0}(m) }{ {r}^{2} } [/tex]

Gravitational Force relative to Moon
[tex]f = \frac{g_{moon} m _{object}(m_{moon} ) }{ {r}^{2} } [/tex]

Gravitational Force relative to earth:
[tex]f = \frac{g_{earth} m _{object}(m_{earth} ) }{ {r}^{2} } [/tex]

Equated Forces such that the gravitational forces are equal:

[tex] \frac{g_{earth}m _{object}(m_{earth} ) }{ {(r)}^{2} } = \frac{g_{moon}m _{object}(m_{moon} ) }{ {(d - r)}^{2} } [/tex]

cancel m_object and g as it is universal.

[tex] \frac{ (m_{earth} ) }{ {(r)}^{2} } = \frac{(m_{moon} ) }{ {(d - r)}^{2} } [/tex]

Some values for our variables:
[tex]d= 384.4 \times {10}^{6} m \\ m _{moon} = 7.35 \times {10}^{22}kg \\ m_{earth} = 5.98 \times {10}^{24} kg[/tex]

pretty it up:

[tex] \frac{ (m_{earth} ) }{ {(r)}^{2} } = \frac{(m_{moon} ) }{ {(d - r)}^{2} } \\ \\ \frac{ {(d - r)}^{2} }{ {(r)}^{2} } = \frac{(m_{moon} ) }{ m_{earth} } \\ \\ \sqrt{ \frac{ {(d - r)}^{2} }{ {(r)}^{2} }} = \sqrt{ \frac{(m_{moon} ) }{ m_{earth} } } \\ \\ \frac{ {d - r} }{ {(r)}} = \sqrt{ \frac{(m_{moon} ) }{ m_{earth} } } \\ [/tex]

Now plug in:

[tex] \frac{ {(d - r)} }{ {(r)}} = \sqrt{ \frac{(m_{moon} ) }{ m_{earth} } } \\ \\ \frac{ { 384.4 \times {10}^{6} - r} }{ {r }} = \sqrt{ \frac{(7.35 \times {10}^{22} )} { (5.98 \times {10}^{24} )}} \\ \\ \frac{ {384.4 \times {10}^{6} - r} }{ {r}} = 9[/tex]

solve for r:

[tex] \frac{(384.4 \times {10}^{6} )}{r} - 1 = 9 \\ \\ r = 3.844 \times {10}^{7} [/tex]

so the distance is about 3.844x10^7 meters or about 24,000 miles

Answer: im good big boy

Explanation: mmm

ACCESS MORE
EDU ACCESS