Respuesta :

Answer:

The solution set is { x | x[tex]\leq[/tex] -2 or x[tex]\geq[/tex] 1}

Step-by-step explanation:

The given inequality is

[tex]x^{2} +x-2>0[/tex]

Let us factor [tex]x^{2} +x-2[/tex]

so we have

[tex](x+2)(x-1)>0[/tex]

Let us find zeros of [tex](x+2)(x-1)[/tex]

[tex](x+2)(x-1)=0[/tex]

[tex]x+2=0[/tex]   or  [tex]x-1 =0[/tex]

[tex]x= -2[/tex] or [tex]x=1[/tex]

so we have intervals (-∞ , -2) , (-2 , 1) and (1, ∞)

we need to find in which interval is [tex]x^{2} +x-2[/tex] is greater than 0

so we will assume the value of x in each interval and will plug it in [tex]x^{2} +x-2[/tex] and will check if we get negative or positive value

Let us check the sign of [tex]x^{2} +x-2[/tex] in (-∞ , -2)

we can take x=-3 and plug it in [tex]x^{2} +x-2[/tex]

so we have

[tex](-3)^{2} +(-3)-2= 9-3-2= 4[/tex]   ( which is greater than 0)

This shows  (-∞, -2) is one of the solution set

similarly we can check the sign of [tex]x^{2} +x-2[/tex] in (-2,1)

we take x= 0 , so we have

[tex]0^{2} +0-2=-2[/tex]  ( which is less than 0)

This shows  (-2,1) is not the solution set

now we check the sign of [tex]x^{2} +x-2[/tex] in (1 ,∞)

we can assume x= 2, so we have

[tex]2^{2} +2-2 = 4[/tex]  ( which is greater than 0)

This shows  (1 ,∞) is the solution set

Hence the solution set in interval notation  (∞ ,-2)∪(1,∞)

we can write this as { x | x[tex]\leq[/tex] -2 or x[tex]\geq[/tex] 1}

Ver imagen ExieFansler

Answer:

A on edge

Step-by-step explanation:

ACCESS MORE