Answer:
1. C
2. D
3. A
4. [tex]\frac{-1}{27a^{3}b^{6}}[/tex]
Step-by-step explanation:
To evaluate or simplify expressions with exponents, we use exponent rules.
- An exponent is only a short cut for multiplication. It simplifies how we write the expression.
- When we multiply terms with the same bases, we add exponents.
- When we divide terms with the same bases, we subtract exponents.
- When we have a base to the exponent of 0, it is 1.
- A negative exponent creates a fraction.
- When we raise an exponent to an exponent, we multiply exponents.
- When we have exponents with parenthesis, we apply it to everything in the parenthesis.
We will use these rules to simplify.
1. [tex](-3)^{-4} = -3*-3*-3*-3=\frac{1}{81}[/tex] Choice C.
2. [tex](-7.4)^{0}=1[/tex] Choice D.
3.[tex]-(5)^{-1}=\frac{-1}{5}[/tex] Choice A.
4. [tex]-(3ab^{2})^{-3} =-(\frac{1}{3ab^{2}*3ab^{2}*3ab^{2}})=\frac{-1}{27a^{3}b^{6}}[/tex]