Answer:
(A)
[tex]x=-4[/tex]
(B)
[tex]g(x)=\frac{3x-1}{x+4}+4[/tex]
(C)
[tex]x=-17[/tex]
Step-by-step explanation:
we are given
[tex]f(x)=\frac{3x-1}{x+4}[/tex]
(a)
we know that
any function is undefined when denominator =0
so, we can set denominator =0
and then we can solve for x
[tex]x+4=0[/tex]
[tex]x=-4[/tex]
So, it does not have solution at [tex]x=-4[/tex]
(b)
If g(x) is a vertical shift up 4 units from f(x)
Whenever we shift vertically upward by 'a' units , we always add 'a' to y-value
so, we get
g(x)=f(x)+4
we get
[tex]g(x)=\frac{3x-1}{x+4}+4[/tex]
Graph:
(C)
we can set g(x)=8
and then we can solve for x
[tex]8=\frac{3x-1}{x+4}+4[/tex]
[tex]8\left(x+4\right)=3x-1+4\left(x+4\right)[/tex]
[tex]8x+32=7x+15[/tex]
[tex]x=-17[/tex]