Find the distance using the modulus of the difference between z1 = -8 + 3i and z2 = 7 - 4i. Show all work for full credit.

Respuesta :

frika

Answer:

[tex]\sqrt{274}[/tex]

Step-by-step explanation:

Given [tex]z_1=-8+3i,\ z_2=7-4i.[/tex]

1. Find the difference [tex]z_1-z_2:[/tex]

[tex]z=z_1-z_2=-8+3i-(7-4i)=-8+3i-7+4i=(-8-7)+(3i+4i)=-15+7i.[/tex]

This complex number has real part [tex]Rez=-15[/tex] and imaginary part [tex]Imz=7.[/tex]

2. The modulus of complex number z is

[tex]|z|=\sqrt{Re^2z+Im^2z}=\sqrt{(-15)^2+7^2}=\sqrt{225+49}=\sqrt{274}.[/tex]

Answer:

The distance between [tex]z_1\ \text{and}\ z_2[/tex] is:

                        16.5529 units

Step-by-step explanation:

We know that the difference between two complex numbers:

[tex]z_1=a_1+ib_1\ \text{and}\ z_2=a_2+ib_2[/tex] is given by:

[tex]|z_1-z_2|=|(a_1+ib_1)-(a_2+ib_2)|\\\\i.e.\\\\|z_1-z_2|=|(a_1-a_2)+i(b_1-b_2)|\\\\|z_1-z_2|=\sqrt{(a_1-a_2)^2+(b_1-b_2)^2}[/tex]

Here we have:

[tex]z_1=-8+3i\ \text{and}\ z_2=7-4i[/tex]

i.e.

[tex]a_1=-8\ ,\ b_1=3,\ a_2=7\ \text{and}\ b_2=-4[/tex]

i.e. we have:

[tex]|z_1-z_2|=\sqrt{(-8-7)^2+(3-(-4))^2}\\\\|z_1-z_2|=\sqrt{15^2+7^2}\\\\|z_1-z_2|=\sqrt{225+49}\\\\|z_1-z_2|=\sqrt{274}\\\\|z_1-z_2|=16.5529[/tex]

ACCESS MORE