Solve x2 + 12x + 6 = 0 using the completing-the-square method.

A) x = negative six plus or minus the square root of thirty

B) x = six plus or minus the square root of thirty

C) x = negative six plus or minus the square root of six

D) x = six plus or minus the square root of six

Respuesta :

Answer:

Option A is correct.

[tex]x = -6 \pm \sqrt{30}[/tex]

Explanation:

Given the expression: [tex]x^2+12x+6 = 0[/tex]

[tex]x^2+12x+6=0[/tex]  

Subtract 6 from both sides, we get

[tex]x^2+12x=-6[/tex]  

halve linear coefficient,then  square it, and add it to both sides

[tex]x^2+12x+36=30[/tex]

Now, the left side is a perfect square

[tex](x+6)^2=30[/tex]  

Now, take square root to both sides.

[tex]x+6=\sqrt{30}[/tex] 

Subtract 6 from both sides, we get;

[tex]x = -6 \pm \sqrt{30}[/tex]

So, the solutions are : [tex]x = -6 \pm \sqrt{30}[/tex]

Answer:

The correct answer is A

[tex]x=-6\pm \sqrt{30}[/tex]

Step-by-step explanation:

The given expression is

[tex]x^2+12x+6=0[/tex]

Add [tex]-6[/tex] to both sides

[tex]x^2+12x=-6[/tex]

Add [tex](\frac{12}{2} )^2=(6)^2[/tex] to both sides.


[tex]x^2+12x+(6)^2=-6+(6)^2[/tex]


We got a perfect square on the left hand side


[tex](x+6)^2=-6+36[/tex]

Simplify the left hand side to get,

[tex](x+6)^2=30[/tex]


Take square root of both sides


[tex](x+6)=\pm \sqrt{30}[/tex]

Solve for [tex]x[/tex].

[tex]x=-6\pm \sqrt{30}[/tex]






ACCESS MORE