WILL MARK BRAINLIEST FOR QUICKEST ANSWER graph the image of the figure after a dilation with a scale factor of 1/4 centered at (5 -5)
![WILL MARK BRAINLIEST FOR QUICKEST ANSWER graph the image of the figure after a dilation with a scale factor of 14 centered at 5 5 class=](https://us-static.z-dn.net/files/dd0/2e0d1c393085400cbdb3d5daeb4d9999.jpg)
Answer:
Given: Scale factor, [tex]k = \frac{1}{4}[/tex] and centered at (5, -5).
Labelled the given figure as A, B and C.
The coordinates of the given triangle ABC are;
A = (-3, 7)
B = (-7, -5) and
C = (9, 3)
To find the image of the figure after a dilation with scale factor 1/4 centered at (5, -5).
The rule of dilation with scale factor 1/4 and centered at (5, -5) is given by;
[tex](x, y) \rightarrow (\frac{1}{4} (x -5) +5 , \frac{1}{4}(y+5) -5)[/tex]
or
[tex](x, y) \rightarrow (\frac{1}{4}x + \frac{15}{4}, \frac{1}{4}y -\frac{15}{4})[/tex]
The coordinates of the image of the figure after dilation are;
[tex]A(-3, 7) \rightarrow (\frac{1}{4}(-3) + \frac{15}{4}, \frac{1}{4}(7)-\frac{15}{4})=(\frac{-3}{4}+ \frac{15}{4}, \frac{7}{4}- \frac{15}{4}) = (\frac{-3+15}{4}, \frac{7-15}{4}) = (\frac{12}{4}, \frac{-8}{4}) = A'(3, -2)[/tex]
[tex]B(-7, -5) \rightarrow (\frac{1}{4}(-7) + \frac{15}{4}, \frac{1}{4}(-5)-\frac{15}{4})=(-\frac{7}{4}+ \frac{15}{4}, -\frac{5}{4}- \frac{15}{4}) = (\frac{-7+15}{4}, \frac{-5-15}{4}) = (\frac{8}{4}, \frac{-20}{4}) = B'(2, -5)[/tex]
[tex]C(9, 3) \rightarrow (\frac{1}{4}(9) + \frac{15}{4}, \frac{1}{4}(3)-\frac{15}{4})=(\frac{9}{4}+ \frac{15}{4}, \frac{3}{4}- \frac{15}{4}) = (\frac{9+15}{4}, \frac{3-15}{4}) = (\frac{24}{4}, \frac{-12}{4}) = C'(6, -3)[/tex]
As,You can see the graph as shown below in the attachment.