Respuesta :
[tex]5\sqrt{3b}\qquad\boxed{YES}\\\\2\sqrt{21}\qquad\boxed{YES}\\\\x\sqrt8=x\sqrt{4\cdot2}=x\sqrt4\cdot\sqrt2=2x\sqrt2\qquad\boxed{NOT}\\\\2\sqrt{36}=2\cdot6=12\qquad\boxed{NOT}\\\\\sqrt5\qquad\boxed{YES}\\\\c\sqrt{12c^2}=c\sqrt{4\cdot3\cdot c^2}=c\sqrt4\cdot\sqrt3\cdot\sqrt{c^2}=c\cdot2\cdot\sqrt3\cdot|c|=2c|c|\sqrt3\qquad\boxed{NOT}[/tex]
Here, you are required to check if each expression can be simplified further
Expression 1, 2 and 5 are in the simplest form already
5√3b
Can not be simplified further
2√21 = 2√7 × 3
aCan not be simplified further
x√8
= x × √4 × 2
= x × √4 × √2
= x × 2 × √2
= 2x√2
Can be simplified further
2√36
= 2 × √36
= 2 × 6
= 12
Can be simplified further
√5
Can not be simplified further
c√12c²
= c × √4×3×c²
= c × √4 × √3 × √c²
= c × 2 × √3 × c
= 2c²√3
Can be simplified further
https://brainly.com/question/11837690