Respuesta :
Answer:
658.24 m
Step-by-step explanation:
Let A be the point from where Elton started. Connect points A and C, you get triangle ABC with AB=500 m, BC=350 m and m∠B=100°. Use the cosine rule to determine the length of the segment AC:
[tex]AC^2=AB^2+BC^2-2\cdot AB\cdot BC\cdot \cos \angle B,\\ \\AC^2=500^2+350^2-2\cdot 500\cdot 350\cdot \cos 100^{\circ},\\ \\AC^2=250000+122500-350000\cdot (-0.174),\\ \\AC^2\approx 433276.8622,\\ \\ AC\approx 658.24\ m.[/tex]
Answer:
658.24 m
Step-by-step explanation:
The figure makes a triangle with vertices abc.
Where ab = 500 m
bc = 350 m
The angle abc = 100°
Using the cosine rule we can find the distance ac.
ac² = 500²+350² - 2×500×350×cos100°
= 372,500 - -60,776.86
= 433,276.86
ac = √433,276.86
= 658.24 m