AB passes through A(-3, 0) and B(-6, 5). What is the equation of the line that passes through the origin and is parallel to AB?

A. 

5x − 3y = 0

B. 

-x + 3y = 0

C. 

-5x − 3y = 0

D. 

3x + 5y = 0

E. 

-3x + 5y = 0

Respuesta :

Answer:

C.  -5x − 3y = 0

Step-by-step explanation:

A(-3, 0) and B(-6, 5)

First we find the slope of line AB

[tex]slope = \frac{y_2-y_1}{x_2-x_1} =\frac{5-0}{-6+3} =\frac{-5}{3}[/tex]

Slope of the line parallel to AB =  slope of line AB

When the lines are parallel then their slope are equal

So the slope of line parallel to AB = [tex]\frac{-5}{3}[/tex]

The line passes through the origin (0,0)

Use equation y-y1= m (x-x1)

m = -5/3 , x1=0 and y1=0

[tex]y-0 = \frac{-5}{3}(x-0)[/tex]

[tex]y= \frac{-5}{3}(x)[/tex]

multiply the whole equation by 3

3y = -5x

Subtract 3x from both sides

0=-5x-3y

-5x - 3y =0