Respuesta :
QUESTION 1
a)
Let
[tex]s [/tex]
represent the amount Same earned and
[tex]k[/tex]
represent the amount Kevin earned.
We were told that, they earned $425 dollars together.
This implies that,
[tex]k+s= 425---eqn(1)[/tex]
It was also given that, Kevin earned $25 more than Same.
This implies,
[tex]k-s=25---eqn(2)[/tex]
For equation (1), when
[tex]s=0[/tex]
[tex]k=425[/tex]
We plot the point,
[tex](425,0)[/tex]
When
[tex]k=0[/tex]
[tex]s=425[/tex]
We plot the point,
[tex](0,425)[/tex]
Similarly for the second equation when
[tex]s=0[/tex]
[tex]k=25[/tex]
This gives the point,
[tex](25,0)[/tex]
When
[tex]k=0[/tex]
[tex]s=-25[/tex]
We plot
[tex](0,-25)[/tex]
and draw a straight line through them.
We can see from the graph that the two points intersect at
[tex](225,200)[/tex]
This implies that
[tex]k=225\:and\:s=200[/tex]
Therefore Kevin earned $ 225
and Same earned $ 200
QUESTION 2
The given system is
[tex]6=-4x + y---eqn(1)[/tex]
and
[tex]-5x-y=21---eqn(2)[/tex]
From equation (2),
[tex]y=-5x-21---eqn(3)[/tex]
Put equation (3) into equation (1).
This implies that,
[tex]6=-4x-5x-21[/tex]
Group like terms,
[tex]6+21=-4x-5x[/tex]
Simplify, to get,
[tex]27=-9x[/tex]
[tex]x=-3[/tex]
We substitute this value into equation (3) to get,
[tex]y=-5(-3)-21[/tex]
[tex]y=15-21[/tex]
[tex]y=-6[/tex]
Therefore the solution is
[tex](-3,-6)[/tex]
QUESTION 3
We want to solve,
[tex]2x+y=20---(1)[/tex]
and
[tex]6x -5y=12---(2)[/tex]
We multiply equation (1) by 3 to get,
[tex]6x+3y=60---(3)[/tex]
Equation (3) minus equation (2) will give us,
[tex]8y=48[/tex]
This means
[tex]y=6[/tex]
Put this value into equation (1) to get,
[tex]2x+6=20[/tex]
[tex]2x=20-6[/tex]
[tex]2x=14[/tex]
[tex]x=7[/tex]
The solution is
[tex](7,6)[/tex]
![Ver imagen kudzordzifrancis](https://us-static.z-dn.net/files/d9b/f9b908636e788b079180b1cb6caf4e69.png)
Answer:
Sam earns $200 and Kevin earns $225.
x , y= -3 , -6 by substitution
x , y= 7, 6 by elimination
Step-by-step explanation:
a) Let the amount earned by Sam = s and the amount earned by Kevin = k
We are given, that they both earn total $425 i.e. s + k = 425
Also, Kevin earns $25 more than Sam i.e. k = s + 25
Hence, the system of equations comes out to be:
s + k = 425
-s + k = 25
b) Take s = x and k = y. See the graph plotted below
c) As the intersection point from the graph comes out to be (s,k) = (200,225)
Therefore, Sam earns $200 and Kevin earns $225.
Now, we have the system
-4x + y = 6
-5x - y = 21
We need to use substitution method.
Take y= -5x - 21 from the 2nd equation and put it in the 1st.
We get, -4x - 5x - 21 = 6 i.e. -9x = 27 i.e. x= -3
Now, substitute this value of x in any of the equation to find y.
We get, -5*(-3) - y = 21 i.e. y = 15 - 21 i.e. y = -6
Now, we are given the system,
2x + y = 20
6x - 5y = 12
We need to use elimination method.
Multiply 5 by equation 1. We get,
10x + 5y = 100
6x - 5y = 12
Adding the above equations, we get, 16x = 112 i.e. x = 7
Put this value in any of the equation to find the value of y.
We get, y = 20 - 2x i.e. y = 20 - 2*7 i.e. y = 20 - 14 i.e. y = 6
![Ver imagen SerenaBochenek](https://us-static.z-dn.net/files/d68/2846efcaa14628cc1bdff30178aac783.png)