bearing in mind that
standard form for a linear equation means
• all coefficients must be integers, no fractions
• only the constant on the right-hand-side
• all variables on the left-hand-side, sorted
• "x" must not have a negative coefficient
[tex]\bf (\stackrel{x_1}{0}~,~\stackrel{y_1}{0})~\hspace{10em} slope = m\implies \cfrac{1}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-0=\cfrac{1}{3}(x-0) \\\\\\ y=\cfrac{1}{3}x\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{3}}{3y=x\implies -x+3y=0}\implies \stackrel{\textit{standard form}}{x-3y=0}[/tex]