Respuesta :

[tex]QR=\sqrt{68^2-60^2}\\QR=\sqrt{4624-3600}\\QR=\sqrt{1024}\\QR=32\\\\sinS=\frac{32}{68}\\sinS=\frac{8}{17}[/tex]

For this case, we have that by definition:

Be a rectangular triangle and an "x" angle.

[tex]Sine (x) = \frac {CO} {H}[/tex]

CO is the leg opposite the angle and H the hypotenuse

We want to find the Sine (S) according to the figure shown:

[tex]Sine {S} = \frac {QR} {68}[/tex]

We do not have the opposite leg, we must apply the Pythagorean theorem, which states:

[tex]H = \sqrt {(CO) ^ 2 + (CA) ^ 2}[/tex]

Where:

H: Hypotenuse

CO: Opposite leg

CA: Adjacent leg

In this case, we must find CO:

[tex]CO = \sqrt {H ^ 2- (CA) ^ 2}[/tex]

Where:

[tex]H = 68\\CA = 60[/tex]

Substituting:

[tex]CO = \sqrt {68 ^ 2-60 ^ 2}\\CO = \sqrt {4624-3600}\\CO = \sqrt {1024}\\CO = 32[/tex]

So, we have:

[tex]Sine (S) = \frac {32} {68}[/tex]

Answer:

[tex]Sine (S) = \frac {32} {68}[/tex]

[tex]Sine (S) = \frac {8} {17}[/tex]

ACCESS MORE