What is the trigonometric ratio for sin S ?
Express your answer, as a simplified fraction.
![What is the trigonometric ratio for sin S Express your answer as a simplified fraction class=](https://us-static.z-dn.net/files/d5c/8f35954212916cdefc94f21b096398a4.png)
[tex]QR=\sqrt{68^2-60^2}\\QR=\sqrt{4624-3600}\\QR=\sqrt{1024}\\QR=32\\\\sinS=\frac{32}{68}\\sinS=\frac{8}{17}[/tex]
For this case, we have that by definition:
Be a rectangular triangle and an "x" angle.
[tex]Sine (x) = \frac {CO} {H}[/tex]
CO is the leg opposite the angle and H the hypotenuse
We want to find the Sine (S) according to the figure shown:
[tex]Sine {S} = \frac {QR} {68}[/tex]
We do not have the opposite leg, we must apply the Pythagorean theorem, which states:
[tex]H = \sqrt {(CO) ^ 2 + (CA) ^ 2}[/tex]
Where:
H: Hypotenuse
CO: Opposite leg
CA: Adjacent leg
In this case, we must find CO:
[tex]CO = \sqrt {H ^ 2- (CA) ^ 2}[/tex]
Where:
[tex]H = 68\\CA = 60[/tex]
Substituting:
[tex]CO = \sqrt {68 ^ 2-60 ^ 2}\\CO = \sqrt {4624-3600}\\CO = \sqrt {1024}\\CO = 32[/tex]
So, we have:
[tex]Sine (S) = \frac {32} {68}[/tex]
Answer:
[tex]Sine (S) = \frac {32} {68}[/tex]
[tex]Sine (S) = \frac {8} {17}[/tex]