Find dy, dx if f(x) = (x + 8)3x. 3xln(x + 8) the product of the quantity 3 times the natural log of the quantity x plus 8 plus 3 times x divided by the quantity x plus 8, and the quantity x plus 8 raised to the 3x power 3 times the natural log of the quantity x plus 8 plus 3 times x divided by the quantity x plus 8 3x(x + 8)(3x − 1)

Respuesta :

Space

Answer:

[tex]\displaystyle \frac{dy}{dx} = 3(x + 8)^{3x} \bigg[ \ln (x+ 8) + \frac{x}{x + 8} \bigg][/tex]

General Formulas and Concepts:
Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                          [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                        [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                            [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Derivative Rule [Chain Rule]:                                                                               [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle f(x) = (x + 8)^{3x}[/tex]

Step 2: Differentiate

  1. Exponential Differentiation [Derivative Rule - Chain Rule]:                      [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \frac{d}{dx} \bigg[ 3x \ln (x + 8) \bigg][/tex]
  2. Derivative Rule [Product Rule]:                                                                   [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ \frac{d}{dx}(3x) \ln (x + 8) + 3x \frac{d}{dx}[ \ln (x + 8)] \bigg][/tex]
  3. Rewrite [Derivative Property - Multiplied Constant]:                                 [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ 3 \frac{d}{dx}(x) \ln (x + 8) + 3x \frac{d}{dx}[ \ln (x + 8)] \bigg][/tex]
  4. Derivative Rule [Basic Power Rule]:                                                           [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ 3 \ln (x + 8) + 3x \frac{d}{dx}[ \ln (x + 8)] \bigg][/tex]
  5. Logarithmic Differentiation [Derivative Rule - Chain Rule]:                       [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ 3 \ln (x + 8) + \frac{3x}{x + 8} \frac{d}{dx} (x + 8) \bigg][/tex]
  6. Rewrite [Derivative Property - Addition/Subtraction]:                               [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ 3 \ln (x + 8) + \frac{3x}{x + 8} \Big[ \frac{d}{dx}(x) + \frac{d}{dx}(8) \Big] \bigg][/tex]
  7. Derivative Rule [Basic Power Rule]:                                                           [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ 3 \ln (x + 8) + \frac{3x}{x + 8} \bigg][/tex]
  8. Simplify:                                                                                                        [tex]\displaystyle \frac{dy}{dx} = 3(x + 8)^{3x} \bigg[ \ln (x+ 8) + \frac{x}{x + 8} \bigg][/tex]

∴ we have found the derivative of the given function.

---

Learn more about derivatives: https://brainly.com/question/3088443

Learn more about calculus: https://brainly.com/question/24296931

---

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

ACCESS MORE