Respuesta :
Answer:
[tex]\displaystyle \frac{dy}{dx} = 3(x + 8)^{3x} \bigg[ \ln (x+ 8) + \frac{x}{x + 8} \bigg][/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle f(x) = (x + 8)^{3x}[/tex]
Step 2: Differentiate
- Exponential Differentiation [Derivative Rule - Chain Rule]: [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \frac{d}{dx} \bigg[ 3x \ln (x + 8) \bigg][/tex]
- Derivative Rule [Product Rule]: [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ \frac{d}{dx}(3x) \ln (x + 8) + 3x \frac{d}{dx}[ \ln (x + 8)] \bigg][/tex]
- Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ 3 \frac{d}{dx}(x) \ln (x + 8) + 3x \frac{d}{dx}[ \ln (x + 8)] \bigg][/tex]
- Derivative Rule [Basic Power Rule]: [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ 3 \ln (x + 8) + 3x \frac{d}{dx}[ \ln (x + 8)] \bigg][/tex]
- Logarithmic Differentiation [Derivative Rule - Chain Rule]: [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ 3 \ln (x + 8) + \frac{3x}{x + 8} \frac{d}{dx} (x + 8) \bigg][/tex]
- Rewrite [Derivative Property - Addition/Subtraction]: [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ 3 \ln (x + 8) + \frac{3x}{x + 8} \Big[ \frac{d}{dx}(x) + \frac{d}{dx}(8) \Big] \bigg][/tex]
- Derivative Rule [Basic Power Rule]: [tex]\displaystyle \frac{dy}{dx} = (x + 8)^{3x} \bigg[ 3 \ln (x + 8) + \frac{3x}{x + 8} \bigg][/tex]
- Simplify: [tex]\displaystyle \frac{dy}{dx} = 3(x + 8)^{3x} \bigg[ \ln (x+ 8) + \frac{x}{x + 8} \bigg][/tex]
∴ we have found the derivative of the given function.
---
Learn more about derivatives: https://brainly.com/question/3088443
Learn more about calculus: https://brainly.com/question/24296931
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation