Respuesta :
Answer:
[tex]m\angle N=m\angle R=30^{\circ}[/tex]
Step-by-step explanation:
We are given that
[tex]\triangle RST=\triangle NPQ[/tex]
[tex]m\angle R=-7x+9,m\angle N=-10x[/tex]
We have to find the measure of angle R and measure of angle N.
When two triangles are equal then their angles are equal
Therefore, [tex]m\angle R=m\angle N[/tex]
[tex]-7x+9=-10x[/tex]
[tex]-7x+10x=-9[/tex]
By subtraction property of equality
[tex]3x=-9[/tex]
By combine like terms
[tex]x=\frac{-9}{3}=-3[/tex]
By division property of equality
Substitute x=-3 then we get
[tex]m\angle R=-7(-3)+9=21+9=30^{\circ}[/tex]
[tex]m\angle N=m\angle R=30^{\circ}[/tex]