Respuesta :

Answer:

option 2

Step-by-step explanation:

in the given triangle,

tan45° = 8/x

=> 1 = 8/x

=>x = 8

for y,

cos45° = 8/y

=>1/√2 = 8/y

=>y = 8√2


Answer:

x=8, [tex]y=8 \sqrt2[/tex]

Step-by-step explanation:

Consider the given right triangle,

As, [tex]\tan \Theta = \frac{Perpendicular}{Base}[/tex]

Consider [tex]\tan 45^{\circ}=\frac{x}{8}[/tex]

[tex]1=\frac{x}{8}[/tex]

So, x=8

As, [tex]\sin \Theta = \frac{Perpendicular}{Hypotenuse}[/tex]

Consider [tex]\sin 45^{\circ}=\frac{8}{y}[/tex]

[tex]\frac{1}{\sqrt2}=\frac{8}{y}[/tex]

So, [tex]y=8 \sqrt2[/tex]

Therefore, x = 8 and [tex]y=8 \sqrt2[/tex]