By the polynomial remainder theorem, the remainder of [tex]P(x)[/tex] upon dividing by [tex]x+3[/tex] is equal to the value of [tex]P(-3)[/tex].
Synthetic division yields
-3 | 1 0 0 -4 4
. | -3 9 -27 93
- - - - - - - - - - - - - - - - - - -
. | 1 -3 9 -31 97
which translates to
[tex]\dfrac{x^4-4x+4}{x+3}=x^3-3x^2+9x-31+\dfrac{97}{x+3}[/tex]
[tex]\implies x^4-4x+4=(x+3)(x^3-3x^2+9x-31)+97[/tex]
Then when [tex]x=-3[/tex], the first term on the right side vanishes and we have [tex]P(-3)=97[/tex].