Answer:
A
Step-by-step explanation:
To find the number of real roots for a quadratic, we apply the discriminate. The discriminate is the inside portion of the square root from the quadratic formula.
a. [tex]x^2-6x+12=0[/tex] where a=1, b=-6, and c=12
[tex]b^2-4ac=(-6)^2-4(1)(12)=36-48=-12<0)[/tex] has no real roots
b. [tex]x^2-25=0[/tex] where a=1, b=0, and c=-25
[tex]b^2-4ac=(0)^2-4(1)(-25)=0+100=100>0)[/tex] has 2 real roots
c. [tex]x^2+11x=0[/tex] where a=1, b=11, and c=0
[tex]b^2-4ac=(11)^2-4(1)(0)=121-0=-121>0)[/tex] has 2 real roots
d. [tex]x^2+12x+11=0[/tex] where a=1, b=12, and c=11
[tex]b^2-4ac=(12)^2-4(1)(11)=144-44=100>0)[/tex] has 2 real roots