Respuesta :

Answer:

The difference of given expressions is [tex]\frac{x^2+7x+10}{x^3-9x}[/tex].

Step-by-step explanation:

The given expression is

[tex]\frac{2x+5}{x^2-3x}-\frac{3x+5}{x^3-9x}-\frac{x+1}{x^2-9}[/tex]

Find factors of denominators.

[tex]\frac{2x+5}{x(x-3)}-\frac{3x+5}{x(x^2-9)}-\frac{x+1}{x^2-9}[/tex]

Use [tex]a^2-b^2=(a-b)(a+b)[/tex]

[tex]\frac{2x+5}{x(x-3)}-\frac{3x+5}{x(x-3)(x+3)}-\frac{x+1}{(x-3)(x+3)}[/tex]

Take  [tex]x(x+3)(x-3)[/tex] as LCD.

[tex]\frac{(x+3)(2x+5)-(3x+5)-x(x+1)}{x(x+3)(x-3)}[/tex]

[tex]\frac{(2x^2+5x+6x+15)-3x-5-x^2-x}{x(x^2-3^2)}[/tex]

[tex]\frac{2x^2+5x+6x+15-4x-5-x^2}{x(x^2-9)}[/tex]

[tex]\frac{x^2+7x+10}{x^3-9x}[/tex]

Therefore the difference of given expressions is [tex]\frac{x^2+7x+10}{x^3-9x}[/tex].

Answer:

(x+5)(x+2)/x^3-9x

Step-by-step explanation:

For short if taking on edgen then option A is correct.