Respuesta :
Answer:
The difference of given expressions is [tex]\frac{x^2+7x+10}{x^3-9x}[/tex].
Step-by-step explanation:
The given expression is
[tex]\frac{2x+5}{x^2-3x}-\frac{3x+5}{x^3-9x}-\frac{x+1}{x^2-9}[/tex]
Find factors of denominators.
[tex]\frac{2x+5}{x(x-3)}-\frac{3x+5}{x(x^2-9)}-\frac{x+1}{x^2-9}[/tex]
Use [tex]a^2-b^2=(a-b)(a+b)[/tex]
[tex]\frac{2x+5}{x(x-3)}-\frac{3x+5}{x(x-3)(x+3)}-\frac{x+1}{(x-3)(x+3)}[/tex]
Take [tex]x(x+3)(x-3)[/tex] as LCD.
[tex]\frac{(x+3)(2x+5)-(3x+5)-x(x+1)}{x(x+3)(x-3)}[/tex]
[tex]\frac{(2x^2+5x+6x+15)-3x-5-x^2-x}{x(x^2-3^2)}[/tex]
[tex]\frac{2x^2+5x+6x+15-4x-5-x^2}{x(x^2-9)}[/tex]
[tex]\frac{x^2+7x+10}{x^3-9x}[/tex]
Therefore the difference of given expressions is [tex]\frac{x^2+7x+10}{x^3-9x}[/tex].
Answer:
(x+5)(x+2)/x^3-9x
Step-by-step explanation:
For short if taking on edgen then option A is correct.