Respuesta :

Answer:

[tex]f^{-1}=+-\sqrt{x+1}[/tex]

Step-by-step explanation:

f(x) = x^2 -1

We need to find f^-1(x)

WE find inverse of f(x)

Replace f(x) with y

[tex]y= x^2 -1[/tex]

Replace x  with y  and y with x

[tex]x= y^2 -1[/tex]

Solve for y

add 1 on both sides , [tex]x+1= y^2[/tex]

To remove square , take square root on both sides

[tex]\sqrt{x+1} =\sqrt{y^2}[/tex]

[tex]\sqrt{x+1} =y[/tex]

[tex]y=+-\sqrt{x+1}[/tex]

Replace y with f^-1

[tex]f^{-1}=+-\sqrt{x+1}[/tex]

Answer:

Inverse function is

[tex]f^{-1}(x)=\pm \sqrt{x+1}[/tex]


Step-by-step explanation:

Given that [tex]f(x)=x^2-1[/tex]

Now using that equation of f(x), we need to find equation of the inverse function

[tex]f(x)=x^2-1[/tex]

[tex]f^{-1}(x)[/tex]


Step 1: Replace [tex]f^{-1}(x)[/tex] with y

[tex]y=x^2-1[/tex]


Step 2: Switchx and  y

[tex]x=y^2-1[/tex]


Step 3: Solve for y

[tex]x=y^2-1[/tex]

[tex]x+1=y^2-1+1[/tex]

[tex]x+1=y^2[/tex]

[tex]y^2=x+1[/tex]

take square root of both sides

[tex]y=\pm \sqrt{x+1}[/tex]


Hence inverse function is

[tex]f^{-1}(x)=\pm \sqrt{x+1}[/tex]