Respuesta :

Answer:

The coordinates of point C are (a,0).

Step-by-step explanation:

Given information: ABC is right isosceles triangle.

From the given figure it is noticed that the side BC is hypotenuse of the triangle ABC.

By pythagoras theorem,

[tex]hypotenuse^2=leg^2+leg^2[/tex]

[tex]hypotenuse^2=2leg^2[/tex]

[tex]hypotenuse=leg\sqrt{2}[/tex]

Therefore hypotenuse cannot be equal to leg. So, we can say that in triangle ABC,

[tex]AB=AC[/tex]

Length of AB is

[tex]AB=\sqrt{(a-0)^2+(0-0)^2}=a[/tex]

From the figure it is noticed that the point C lies on the x-axis, therefore the y-coordinates of C is 0.

Let the coordinates of C be (x,0) and length of AC must be a.

[tex]AC=\sqrt{(x-0)^2+(0-0)^2}[/tex]

[tex]a=x[/tex]

Therefore coordinates of point C are (a,0).

Ver imagen DelcieRiveria
ACCESS MORE