Respuesta :
12x + 6y = 120 -----(eq. 1)
4x + y = 30 -----(eq. 2)
4x + y = 30
4x = 30 - y
x = (30 - y)/4
Substituting this value of x in eq. 1, we get,
[tex]12( \frac{30 \: - \: y}{4} ) \: + \: 6y \: = \: 120[/tex]
[tex]3(30 \: - \: y) \: + \: 6y \: = 120[/tex]
[tex]90 \: - \: 3y \: + \: 6y \: = \: 120[/tex]
[tex]3y \: = \: 30[/tex]
[tex]y \: = \: 10[/tex]
[tex]x \: = \: \frac{30 \: - \: y}{4} [/tex]
[tex]x \: = \: \frac{30 \: - \: 10}{4} [/tex]
[tex]x \: = \: \frac{20}{4} [/tex]
[tex]x \: = \: 5[/tex]
Hence, x = 5, and y = 10.
To verify, substitute the values in the equation,
4(5) + (10) = 30
30=30
12(5) + 6(10) = 120
120=120.
4x + y = 30 -----(eq. 2)
4x + y = 30
4x = 30 - y
x = (30 - y)/4
Substituting this value of x in eq. 1, we get,
[tex]12( \frac{30 \: - \: y}{4} ) \: + \: 6y \: = \: 120[/tex]
[tex]3(30 \: - \: y) \: + \: 6y \: = 120[/tex]
[tex]90 \: - \: 3y \: + \: 6y \: = \: 120[/tex]
[tex]3y \: = \: 30[/tex]
[tex]y \: = \: 10[/tex]
[tex]x \: = \: \frac{30 \: - \: y}{4} [/tex]
[tex]x \: = \: \frac{30 \: - \: 10}{4} [/tex]
[tex]x \: = \: \frac{20}{4} [/tex]
[tex]x \: = \: 5[/tex]
Hence, x = 5, and y = 10.
To verify, substitute the values in the equation,
4(5) + (10) = 30
30=30
12(5) + 6(10) = 120
120=120.