35 POINT QUESTION, WILL MARK BRAINLIEST. Which of the following options is a 3rd degree polynomial with exactly 1 real root?
![35 POINT QUESTION WILL MARK BRAINLIEST Which of the following options is a 3rd degree polynomial with exactly 1 real root class=](https://us-static.z-dn.net/files/d6b/fa766175483cbb79174aceebe17b2c2a.png)
Answer:
A. F(x) = x^3+9x^2+27x+27
Step-by-step explanation:
I am not 100% sure but I think this is right.
I found the root for this equation: x=-3
Hope this helps!
Answer:
The correct option is D.
Step-by-step explanation:
In option A,
The given function is
[tex]F(x)=x^3+9x^2+27x+27[/tex]
[tex]F(x)=x^3+3(3)x^2+3(3^2)x+3^3[/tex]
[tex]F(x)=(x+3)^3[/tex] [tex][\because (a+b)^3=a^3+3a^2b+3ab^2+b^3][/tex]
Equate the function equal to zero, to find the roots.
[tex](x+3)(x-3)(x-3)=0\Rigtharrow x=-3[/tex]
The real root of this function is -3 with multiplicity 3. It means this function has 3 real roots.
In option B,
The given function is
[tex]F(x)=x^3+3x^2-9x-27[/tex]
[tex]F(x)=x^2(x+3)-9(x-3)[/tex]
[tex]F(x)=(x^2-9)(x+3)[/tex]
[tex]F(x)=(x+3)(x-3)(x+3)[/tex] [tex][\because a^2-b^2=(a+b)(a-b)][/tex]
Equate the function equal to zero, to find the roots.
[tex](x+3)(x-3)(x+3)=0\Rigtharrow x=-3,3,-3[/tex]
Therefore, this function has 3 real roots.
In option C,
The given function is
[tex]F(x)=x^3-9x^2+27x-27[/tex]
[tex]F(x)=x^3-3(3)x^2+3(3^2)x-3^3[/tex]
[tex]F(x)=(x-3)^3[/tex] [tex][\because (a-b)^3=a^3-3a^2b+3ab^2-b^3][/tex]
Equate the function equal to zero, to find the roots.
[tex](x-3)(x-3)(x-3)=0\Rigtharrow x=3[/tex]
The real root of this function is 3 with multiplicity 3. It means this function has 3 real roots.
In option D,
[tex]F(x)=x^3+3x^2+9x+27[/tex]
[tex]F(x)=x^2(x+3)+9(x+3)[/tex]
[tex]F(x)=(x+3)(x^2+9)[/tex]
Equate the function equal to zero, to find the roots.
[tex](x+3)(x^2+9)=0[/tex]
[tex]x+3=0\Rightarrow x=-3[/tex]
[tex]x^2+9=0\Rightarrow x^2=-9\Rightarrow x=\pm 3i(Imaginary)[/tex]
The roots of this functions are -3, 3i and -3i. Since this function has exactly one real root, therefore option D is correct.