Answer:
BE:EC= 1/3
Step-by-step explanation:
Given ABCD is a parallelogram, Point K is such that it belongs to diagonal BD so that BK:DK=1:4.
If we make an extension of AK which meets BS at point E, then using ΔDKA and ΔEKB, we have
∠DKA=∠EKB (Vertically opposite angles)
∠KDA=∠KBE (Alternate interior angles)
∠DAK=∠BEK (Alternate interior angles)
Thus by AAA similarity,ΔDKA≅ΔEKB
⇒[tex]\frac{AD}{BE}[/tex]= [tex]\frac{DK}{BK}[/tex],
Since, AD= BC,therefore
[tex]\frac{AD}{BE}[/tex]= [tex]\frac{BC}{BE}[/tex]= [tex]\frac{4}{1}[/tex]
Now, BC= BE+EC, ⇒[tex]\frac{BE+EC}{BE}[/tex]= [tex]\frac{4}{1}[/tex]
⇒1+[tex]\frac{EC}{BE} = \frac{4}{1}[/tex]
⇒[tex]\frac{EC}{BE}= 3[/tex]
Reciprocating on both the sides, we get
[tex]\frac{BE}{BC} = \frac{1}{3}[/tex]