Respuesta :

Answer:

BE:EC= 1/3

Step-by-step explanation:

Given ABCD is a parallelogram, Point K is such that it belongs to diagonal BD so that BK:DK=1:4.

If we make an extension of AK which meets BS at point E, then using ΔDKA and ΔEKB, we have

∠DKA=∠EKB (Vertically opposite angles)

∠KDA=∠KBE (Alternate interior angles)

∠DAK=∠BEK (Alternate interior angles)

Thus by AAA similarity,ΔDKA≅ΔEKB

⇒[tex]\frac{AD}{BE}[/tex]= [tex]\frac{DK}{BK}[/tex],

Since, AD= BC,therefore

[tex]\frac{AD}{BE}[/tex]= [tex]\frac{BC}{BE}[/tex]= [tex]\frac{4}{1}[/tex]

Now, BC= BE+EC, ⇒[tex]\frac{BE+EC}{BE}[/tex]= [tex]\frac{4}{1}[/tex]

⇒1+[tex]\frac{EC}{BE} = \frac{4}{1}[/tex]

⇒[tex]\frac{EC}{BE}= 3[/tex]

Reciprocating on both the sides, we get

[tex]\frac{BE}{BC} = \frac{1}{3}[/tex]

Ver imagen empathictruro
ACCESS MORE