Respuesta :
Answer:
1. [tex]18 \cdot \sqrt{638}[/tex]
2. [tex]\frac{y^{3}}{2 x^4}[/tex]
3. [tex]\frac{2 x^2}{3 y z^{−7}} [/tex]
Step-by-step explanation:
1. Assuming the expression is:
[tex]3 \cdot \sqrt{22} \cdot \sqrt{58} \cdot \sqrt{18}[/tex]
Express the radicands as multiplication of prime numbers:
[tex]3 \cdot \sqrt{11 \cdot 2} \cdot \sqrt{2 \cdot 29} \cdot \sqrt{3^2 \cdot 2}[/tex]
Distribute the radicals over the multiplication where a power is present:
[tex]3 \cdot \sqrt{11 \cdot 2} \cdot \sqrt{2 \cdot 29} \cdot \sqrt{3^2} \cdot \sqrt{2}[/tex]
[tex]3 \cdot \sqrt{11 \cdot 2} \cdot \sqrt{2 \cdot 29} \cdot 3 \cdot \sqrt{2}[/tex]
[tex]9 \cdot \sqrt{11 \cdot 2} \cdot \sqrt{2 \cdot 29} \cdot \sqrt{2}[/tex]
Apply the inverse of distributive property of radicals over multiplication:
[tex]9 \cdot \sqrt{11 \cdot 2 \cdot 2 \cdot 29\cdot 2}[/tex]
[tex]9 \cdot \sqrt{11 \cdot 2^2 \cdot 29\cdot 2}[/tex]
[tex]9 \cdot \sqrt{11 \cdot 29\cdot 2} \cdot \sqrt{2^2} [/tex]
[tex]9 \cdot \sqrt{638} \cdot 2 [/tex]
[tex]18 \cdot \sqrt{638}[/tex]
2. Assuming the expression is:
[tex](2 x^4 y^{-3})^{-1}[/tex]
Distribute the exponent over the multiplication
[tex]2^{-1} \cdot {(x^4)}^{-1} \cdot {(y^{-3})}^{-1}[/tex]
[tex]\frac{1}{2} \cdot x^{-4} \cdot y^{3}[/tex]
[tex]\frac{1}{2} \cdot \frac{1}{x^4} \cdot y^{3}[/tex]
[tex]\frac{y^{3}}{2 x^4}[/tex]
3. Assuming the expression is:
[tex]\frac{2 x^4y^{-4}z^{-3}}{3 x^2 y^{-3} z^4}[/tex]
Group by similar terms and simplify:
[tex]\frac{2}{3} \cdot \frac{x^4}{x^2} \cdot \frac{y^{-4}}{y^{-3}} \cdot \frac{z^{-3}}{z^4}[/tex]
[tex]\frac{2}{3} \cdot x^2 \cdot y^{-1} \cdot z^{-7}[/tex]
[tex]\frac{2 x^2}{3 y z^{-7}} [/tex]