Please help! I have 5 more mins on my timed quiz. I WILL GIVE BRAINLIEST!

1. Multiply.

3√⋅22√⋅58√⋅18−−√

Enter your answer, in simplest radical form, in the box.

2. Use the properties of exponents to simplify the expression all the way.

(2x4y−3)−1

2x4y3

2y3x4

2x4y3

y32x4

3. Use properties of exponents to simplify the following expression.

2x4y−4z−33x2y−3z4

2x23yz7

2yz3x2

2x4y3z

3x2y3z42

Respuesta :

only know number 1 sorryyyy


1 . 11^2⋅√58


Answer:

1. [tex]18 \cdot \sqrt{638}[/tex]

2. [tex]\frac{y^{3}}{2 x^4}[/tex]

3. [tex]\frac{2 x^2}{3 y z^{−7}} [/tex]

Step-by-step explanation:

1. Assuming the expression is:

[tex]3 \cdot \sqrt{22} \cdot \sqrt{58} \cdot \sqrt{18}[/tex]

Express the radicands as multiplication of prime numbers:

[tex]3 \cdot \sqrt{11 \cdot 2} \cdot \sqrt{2 \cdot 29} \cdot \sqrt{3^2 \cdot 2}[/tex]

Distribute the radicals over the multiplication where a power is present:

[tex]3 \cdot \sqrt{11 \cdot 2} \cdot \sqrt{2 \cdot 29} \cdot \sqrt{3^2} \cdot \sqrt{2}[/tex]

[tex]3 \cdot \sqrt{11 \cdot 2} \cdot \sqrt{2 \cdot 29} \cdot 3 \cdot \sqrt{2}[/tex]

[tex]9 \cdot \sqrt{11 \cdot 2} \cdot \sqrt{2 \cdot 29} \cdot \sqrt{2}[/tex]

Apply the inverse of distributive property of radicals over multiplication:

[tex]9 \cdot \sqrt{11 \cdot 2 \cdot 2 \cdot 29\cdot 2}[/tex]

[tex]9 \cdot \sqrt{11 \cdot 2^2 \cdot 29\cdot 2}[/tex]

[tex]9 \cdot \sqrt{11 \cdot 29\cdot 2} \cdot \sqrt{2^2} [/tex]

[tex]9 \cdot \sqrt{638} \cdot 2 [/tex]

[tex]18 \cdot \sqrt{638}[/tex]

2. Assuming the expression is:

[tex](2 x^4 y^{-3})^{-1}[/tex]

Distribute the exponent over the multiplication

[tex]2^{-1} \cdot {(x^4)}^{-1} \cdot {(y^{-3})}^{-1}[/tex]

[tex]\frac{1}{2} \cdot x^{-4} \cdot y^{3}[/tex]

[tex]\frac{1}{2} \cdot \frac{1}{x^4} \cdot y^{3}[/tex]

[tex]\frac{y^{3}}{2 x^4}[/tex]

3. Assuming the expression is:

[tex]\frac{2 x^4y^{-4}z^{-3}}{3 x^2 y^{-3} z^4}[/tex]

Group by similar terms and simplify:

[tex]\frac{2}{3} \cdot \frac{x^4}{x^2} \cdot \frac{y^{-4}}{y^{-3}} \cdot \frac{z^{-3}}{z^4}[/tex]

[tex]\frac{2}{3} \cdot x^2 \cdot y^{-1} \cdot z^{-7}[/tex]

[tex]\frac{2 x^2}{3 y z^{-7}} [/tex]