Respuesta :

Answer:

The even functions are options 2, 3, and 5

Step-by-step explanation:

Please, see the attached file.

Thanks.

Ver imagen Professor1994

Answer:

Options B, C and E are even functions.

Step-by-step explanation:

If f(x) = f(-x) then function is called to be even.

A). f(x) = ∛8x

f(-x) = ∛8(-x) = (∛8)(∛(-x) = 2∛(-x)

Therefore f(x) ≠ f(-x)

So function is not an even function.

B). [tex]f(x)=log_{9}x^{6}[/tex]

[tex]f(-x)=log_{9}(-x)^{6}[/tex]

[tex]=log_{9}(x)^{6}[/tex]

f(x) = f(-x)

So this function is even.

C). [tex]f(x)=\frac{1}{x^{8}+7x^{7}}[/tex]

[tex]f(-x)=\frac{1}{(-x)^{8}+7(-x)^{6}}[/tex]

            = [tex]\frac{1}{x^{8}+7x^{6}}[/tex]

f(x) = f(-x)

Therefore given function is even.

D). f(x) = [tex]e^{x^{8}-x }[/tex]

[tex]f(-x)=e^{(-x)^{8}-(-x)}=e^{x^{8}+x}[/tex]

Therefore f(x) ≠ f(-x)

So the given function is not even.

E). f(x) = |8x| - 3

f(-x) = |8(-x)| - 3

      = |8x| - 3

f(x) = f(-x)

Therefore, function is even.

F). [tex]f(-x)= -9(-x)^{10}+5(-x)^{4}-12(-x)[/tex]

[tex]f(-x)= -9(x)^{10}+5(x)^{4}+12(x)[/tex]

f(x) ≠ f(-x)

Therefore the given function is not an even function.

Options B, C and E are even functions.

ACCESS MORE