ANSWER
[tex]m \: < \: R = 80 \degree[/tex]
[tex]m \: < \: S=50 \degree[/tex]
and
[tex]m \: < \: Q = 50 \degree[/tex]
EXPLANATION
Since the triangle is an isosceles triangle, the base angles are equal.
The three interiors angles of the triangle are,
[tex](3x + 47) \degree,(4x + 6) \degree \: ,(4x + 6) \degree [/tex]
The sum of these three angles must equal 180°.
[tex](3x + 47) \degree + (4x + 6) \degree \: + (4x + 6) \degree = 180 \degree[/tex]
We group like terms to get,
[tex]3x + 4x + 4x = 180 - 47 - 6 - 6[/tex]
This simplifies to,
[tex]11x = 121[/tex]
We divide both sides by 11 to get,
[tex]x = 11[/tex]
The measure of the angles are,
[tex](3(11)+ 47) \degree,(4(11) + 6) \degree \: ,(4(11) + 6) \degree [/tex]
[tex](33+ 47) \degree,(44+ 6) \degree \: ,(44 + 6) \degree [/tex]
[tex]80\degree,50\degree \:, 50\degree [/tex]