QUESTION 1
The point C(3.6, -0.4) divides AB in the ratio 3 : 2.
The coordinates of A are (-6, 5).
Let the coordinates of B be [tex](x_2,y_2)[/tex]
We use the formula:
[tex]x=\frac{mx_2+nx_1}{m+n}[/tex] to determine the x-coordinate of B.
We substitute the known values to obtain:
[tex]3.6=\frac{3x_2+2(-6)}{3+2}[/tex]
[tex]3.6=\frac{3x_2-12)}{5}[/tex]
[tex]3.6\times 5=3x_2-12[/tex]
[tex]18=3x_2-12[/tex]
[tex]18+12=3x_2[/tex]
[tex]30=3x_2[/tex]
This implies that:
[tex]x_2=10[/tex]
We also use the formula:
[tex]y=\frac{my_2+ny_1}{m+n}[/tex] to find the y-coordinate.
[tex]-0.4=\frac{3y_2+2(5)}{3+2}[/tex]
[tex]-0.4=\frac{3y_2+10}{5}[/tex]
[tex]-0.4\times 5=3y_2+10[/tex]
[tex]-2-10=3y_2[/tex]
[tex]-12=3y_2[/tex]
[tex]-4=y_2[/tex]
The coordinates of B are (10,-4)
QUESTION 2.
If point D divides CD in the ratio 4 : 5.
Then the coordinates of D are:
[tex](\frac{4(10)+5(3.6)}{4+5}, \frac{4(-4)+5(-0.4)}{4+5})[/tex]
[tex](\frac{58}{9}, \frac{-18}{9})[/tex]
The coordinates of D are [tex](\frac{58}{9}, -2)[/tex]