Point C(3.6, -0.4) divides in the ratio 3 : 2. If the coordinates of A are (-6, 5), the coordinates of point B are .
A (5,-4)
B (5,-2)
C (10,-4)
D (10,-2)

If point D divides in the ratio 4 : 5, the coordinates of point D are .
A (62/9,-4)
B (58/9,-4)
C (62/9,-2)
D (58/9,-2)

Respuesta :

QUESTION 1

The point  C(3.6, -0.4) divides AB in the ratio 3 : 2.

The coordinates of A are (-6, 5).

Let the coordinates of B be [tex](x_2,y_2)[/tex]

We use the formula:

[tex]x=\frac{mx_2+nx_1}{m+n}[/tex] to determine the x-coordinate of B.

We substitute the known values to obtain:

[tex]3.6=\frac{3x_2+2(-6)}{3+2}[/tex]

[tex]3.6=\frac{3x_2-12)}{5}[/tex]

[tex]3.6\times 5=3x_2-12[/tex]

[tex]18=3x_2-12[/tex]

[tex]18+12=3x_2[/tex]

[tex]30=3x_2[/tex]

This implies that:

[tex]x_2=10[/tex]

We also use the formula:

[tex]y=\frac{my_2+ny_1}{m+n}[/tex] to find the y-coordinate.

[tex]-0.4=\frac{3y_2+2(5)}{3+2}[/tex]

[tex]-0.4=\frac{3y_2+10}{5}[/tex]

[tex]-0.4\times 5=3y_2+10[/tex]

[tex]-2-10=3y_2[/tex]

[tex]-12=3y_2[/tex]

[tex]-4=y_2[/tex]

The coordinates of B are (10,-4)

QUESTION 2.

If point D divides CD in the ratio 4 : 5.

Then the coordinates of D are:

[tex](\frac{4(10)+5(3.6)}{4+5}, \frac{4(-4)+5(-0.4)}{4+5})[/tex]

[tex](\frac{58}{9}, \frac{-18}{9})[/tex]

The coordinates of D are [tex](\frac{58}{9}, -2)[/tex]

ACCESS MORE