Respuesta :

As given,

Foci (0,10) ; (0,-10) and Vertices (0,6) ; (0,-6)

Now we know the general equation of hyperbola will be,

[tex]\frac{y^{2} }{a^{2} } -\frac{x^{2} }{b^{2} } =1\\\\[/tex]

Now distance from origin to vertex is given, 6 ;

therefore, [tex]a=6[/tex]

And distance from origin to Focus is given , [tex]c=10;\\[/tex]

Using the equation, [tex]c^{2}=a^{2}+b^{2} \\c=10 ; a=6,[/tex]

Apply these values in the equation and find out the value of b,

[tex]c^{2}=a^{2} +b^{2}\\10^{2}=6^{2}+b^{2}\\100=36+b^{2}\\100-36=b^{2}\\ b^{2}=64\\ b=8\\[/tex]

Hence equation of Hyperbola will be,

[tex]\frac{y^{2} }{6^{2} }-\frac{x^{2} }{8^{2} }=1\\\frac{y^{2} }{36}-\frac{x^{2} }{64} =1[/tex]

Here we are done.

Answer:

y^2/36 - x^2/64 = 1

Hope this helps <3