What is the remainder R when the polynomial p(x) is divided by (x - 2)? Is (x - 2) a factor of p(x)? P(x) = -4x4 + 6x3 + 8x2 - 6x - 4 A) R = 0, no B) R = 0, yes C) R = -72, no D) R = -72, yes

Respuesta :

Answer:

B

(x-2) is a factor since remainder is 0.

Step-by-step explanation:

We divide (x-2) into the polynomial [tex]-4x^4+6x^3+8x^2-6x-4[/tex] through long division or synthetic. We choose long division and look for what will multiply with (x-2) to make the polynomial [tex]-4x^4+6x^3+8x^2-6x-4[/tex] .

[tex](x-2)(-4x^3)=-4x^4+8x^3[/tex]

We subtract this from the original [tex]-4x^4-(-4x^4)+6x^3-(8x^3)+8x^2-6x-4[/tex].

This leaves [tex]-2x^3+8x^2-6x-4[/tex]. We repeat the step above.

[tex](x-2)(-2x^2)=-2x^3+4x^2[/tex].

We subtract this from [tex]-2x^3-(-2x^3)+8x^2-(4x^2)-6x-4=4x^2-6x-4[/tex]. We repeat the step above.

[tex](x-2)(4x)=4x^2-8x[/tex].

We subtract this from [tex]4x^2-(4x^2)-6x-(-8x)-4=2x-4[/tex]. We repeat the step above.

[tex](x-2)(2)=2x-4[/tex].

We subtract this from [tex]2x-(2x)-4-(4)=0[/tex]. There is no remainder. This means (x-2) is a factor.


ACCESS MORE