Answer: [tex]\frac{27}{125}[/tex]
Step-by-step explanation:
Here the total numbers are 1, 4, 3, 7, 6
Since the total number of possible arrangement = [tex]5\times 5 \times5 \times 5 \times 5=5^5[/tex]
The total number of the odd numbers in the given numbers = 3
Thus the possible arrangement that the first three digits will be odd numbers = [tex]3\times 3\times 3\times 5\times 5=3^3\times 5^2[/tex]
Thus, the probability that the first three digits of Irvings ID number will be odd numbers = the possible arrangement that the first three digits will be odd numbers / total possible arrangement = [tex]\frac{3^3\times 5^2}{5^5} = \frac{3^2}{5^{5-2}}[/tex]
= [tex]\frac{3^3}{5^3} = \frac{27}{125}[/tex]