Respuesta :

Answer:

The vertex form of the function is [tex]f(x)=(x-1)^2+3[/tex].

Step-by-step explanation:

The given function is

[tex]f(x)=4+x^2-2x[/tex]

The vertex form is

[tex]f(x)=(x-h)^2+k[/tex]

Rewrite the given function

[tex]f(x)=(x^2-2x)+4[/tex]

[tex]-\frac{b}{2a}=-\frac{-2}{2(1)}=1[/tex]

Add and Subtract [tex](-\frac{b}{2a})^2[/tex].

[tex]f(x)=(x^2-2x+1)+4-1[/tex]

Use [tex](a-b)^2=a^2-2ab+b^2[/tex]

[tex]f(x)=(x-1)^2+3[/tex]

Therefore the vertex form of the function is [tex]f(x)=(x-1)^2+3[/tex].

Answer: A on Edge 2020

Step-by-step explanation:

ACCESS MORE