Light travels at a speed of 1.17 × 107 miles per minute. Pluto's average distance from the Sun is 3,670,000,000 miles. On average, how long does it take sunlight to reach Pluto? Enter your answer in scientific notation, and, if necessary, round your multiplier to the nearest hundredth.

Respuesta :

Answer:

It will take 5 hours 8 minute.

Step-by-step explanation:

Speed of light is [tex]1.17\times 10^7[/tex] miles/min

Distance between the Pluto and the Sun is [tex]3,670,000,000=3.6\times 10^9[/tex] miles.

We know that,

[tex]\text{Speed}=\dfrac{\text{Distance}}{\text{Time}}[/tex]

i.e [tex]\text{Time}=\dfrac{\text{Distance}}{\text{Speed}}[/tex]

Putting the values,

[tex]\text{Time}=\dfrac{3.6\times 10^9}{1.17\times 10^7}=308\ min=5\ hr\ 8\ min[/tex]

Speed is the rate of change of distance over time.

It will take [tex]\mathbf{2.20 \times 10^{2}}[/tex] minutes to get to Pluto.

The given parameters are:

[tex]\mathbf{Speed = 1.17 \times 10^7 miles/mins}[/tex]

[tex]\mathbf{Distance = 3670000000 miles}[/tex]

Speed is calculated as:

[tex]\mathbf{Speed = \frac{Distance}{Time}}[/tex]

Make Time the subject

[tex]\mathbf{Time = \frac{Distance}{Speed}}[/tex]

Substitute values for Speed and Distance

[tex]\mathbf{Time = \frac{3670000000\ miles}{1.17 \times 10^7 miles/mins}}[/tex]

[tex]\mathbf{Time = \frac{3670000000\ mins}{1.17 \times 10^7 }}[/tex]

Rewrite as:

[tex]\mathbf{Time = \frac{3.67\times 10^9\ mins}{1.17 \times 10^7 }}[/tex]

Apply law of indices

[tex]\mathbf{Time = \frac{3.67\times 10^{9 - 7}\ mins}{1.17}}[/tex]

Divide

[tex]\mathbf{Time = 2.20 \times 10^{2}\ mins}[/tex]

Hence, it will take [tex]\mathbf{2.20 \times 10^{2}}[/tex] minutes to get to Pluto.

Read more about speed and rates at:

https://brainly.com/question/359790