a) Find a polynomial, which, when added to the polynomial 5x2–3x–9, is equivalent to: 18

b) Find a polynomial, which, when added to the polynomial 5x2–3x–9, is equivalent to: 0

Respuesta :

Answer:

a) [tex]-5x^{2}+3x+27[/tex]

b) [tex]-5x^{2}+3x+9[/tex]

Step-by-step explanation:

a) Let the required polynomial be p(x).

We have the relation, [tex]5x^{2}-3x-9[/tex] + p(x) = 18

i.e. p(x) = 18 [tex]-5x^{2}+3x+9[/tex]

i.e. p(x) = [tex]-5x^{2}+3x+27[/tex]


b) Let the required polynomial be q(x).

We have the relation, [tex]5x^{2}-3x-9[/tex] + q(x) = 0

i.e. q(x) = 0 [tex]-5x^{2}+3x+9[/tex]

i.e. q(x) = [tex]-5x^{2}+3x+9[/tex]

Answer:

(a) [tex]-5x^2+3x+27[/tex]

(b)  [tex]-5x^2+3x+9[/tex]

Step-by-step explanation:

(a)

Let the polynomial be Q(x).

Given polynomial P(x) = [tex]5x^2-3x-9[/tex]

As per the given statement: A polynomial(Q(x)) which, when added to the polynomial [tex]5x^2-3x-9[/tex], is equivalent to 18.

[tex]P(x)+Q(x) = 18[/tex]

[tex]5x^2-3x-9 +Q(x) = 18[/tex]

⇒[tex]Q(x) = 18 -(5x^2-3x-9)[/tex]

or

[tex]Q(x) = 18 -5x^2+3x+9[/tex]

Simplify:

[tex]Q(x) =-5x^2+3x+27[/tex]

Therefore, the polynomial is,  [tex]-5x^2+3x+27[/tex]

Check:

[tex]P(x)+Q(x)[/tex] = [tex]5x^2-3x-9 +(-5x^2+3x+27)[/tex]

                      = [tex]5x^2-3x-9 -5x^2 +3x+27[/tex]

                       = 18

(b)

Let the polynomial be Q(x).

Given polynomial P(x) = [tex]5x^2-3x-9[/tex]

As per the given statement: A polynomial(Q(x)) which, when added to the polynomial [tex]5x^2-3x-9[/tex], is equivalent to 0.

[tex]P(x)+Q(x) = 0[/tex]

[tex]P(x) = -Q(x)[/tex]

⇒[tex]Q(x) = -(5x^2-3x-9)[/tex]

or

[tex]Q(x) = -5x^2+3x+9[/tex]

Therefore, the polynomial is,  [tex]-5x^2+3x+9[/tex]

Check:

[tex]P(x)+Q(x)[/tex]=[tex]5x^2-3x-9 +(-5x^2+3x+9)[/tex]

                      = [tex]5x^2-3x-9-5x^2 +3x+9[/tex]

                       = 0

ACCESS MORE