Solve the problems below. Please answer with completely simplified exact value(s) or expression(s).
a)
In ΔABC, AC = BC, CD⊥AB with D∈AB, AB = 4 in, and CD = 3 in. Find AC.

b)
Given: ΔABC, AB = BC = AC = a. Find: The area of ΔABC

Respuesta :

Answer:

a) AC = [tex]\sqrt{13}[/tex]

b) Area = [tex]\frac{\sqrt 3}{4}[/tex] × [tex]a^{2}[/tex]

Step-by-step explanation:

a) From question,

                      AC = BC, CD⊥AB

Now in ΔCAD and ΔCBD

AC=BC, ∠A = ∠B and AD=BD (because in isosceles triangle perpendicular bisects the side).

then, from SAS potulates

                     ΔCAD≅ΔCBD

So,

    AD = [tex]\frac{AB}{2}[/tex] = [tex]\frac{4}{2}[/tex] = 2 in

From Pythagorean theorem in ΔADC

[tex]AC^{2}[/tex] = [tex]AD^{2}[/tex] + [tex]CD^{2}[/tex]

[tex]AC^{2}[/tex] = [tex]2^{2}[/tex] + [tex]3^{2}[/tex]

[tex]AC^{2}[/tex] = 4 + 9 = 13

AC = [tex]\sqrt{13}[/tex]

b) In given ΔABC,

               AB = BC = AC = a,  means ΔABC is a equilateral triangle.

So, area of equilateral triangle is

                              Area = [tex]\frac{\sqrt 3}{4}[/tex] ×  [tex]side^{2}[/tex]

                                side = a

then,

       Area = [tex]\frac{\sqrt 3}{4}[/tex] × [tex]a^{2}[/tex]              

Ver imagen apocritia
Ver imagen apocritia

Answer:

a) √7

Step-by-step explanation:

ACCESS MORE