Respuesta :

Answer:

AAS(Angle-Angle-Side) postulate states that if two angles and the non-included side one triangle are congruent to two angles and the non-included side of another triangle, then the two triangles are congruent

In triangle RAS and triangle QAT

[tex]\angle R =\angle Q[/tex]   [Angle]

[tex]AS =AT[/tex]    [Side]                                       [Given]

By Base Angle Theorem states that in an isosceles triangle(i.e, AST), the angles opposite the congruent sides(AS =AT) are congruent.

⇒ [tex]\angle 5= \angle 6[/tex]      [By base ∠'s of isosceles triangle are equal]

By definition of supplementary angles, if two Angles are Supplementary when they add up to 180 degrees.

[tex]\angle 4[/tex], [tex]\angle 5[/tex] are supplementary and [tex]\angle 6[/tex], [tex]\angle 7[/tex] are supplementary.

⇒[tex]\angle 4+ \angle 5 =180^{\circ}[/tex] and

[tex]\angle 6+ \angle 7 =180^{\circ}[/tex]  

Two [tex]\angle 's[/tex] supplementary to equal [tex]\angle 's[/tex]

[tex]\angle 4+ \angle 5 =\angle 6+ \angle 7[/tex]

Since,  [tex]\angle 5 =\angle 6[/tex]  

then, we get;

[tex]\angle 4 =\angle 7[/tex]  [Angle]

then, by AAS postulates,

[tex]\triangle RAS \cong \triangle QAT[/tex]

By CPCT[Corresponding Part of Congruent Triangles are equal]

[tex]RS = QT[/tex]              Hence Proved!

Ver imagen OrethaWilkison