Allison is rolling her hula hoop on the playground. The radius of her hula hoop is 35 \text{ cm}35 cm. What is the distance the hula hoop rolls in 44 full rotations? Round your answer to the nearest \text{cm}cm.

Respuesta :

Answer:

distance covered in 44 full rotation = 9671 cm

Step-by-step explanation:

It is given that radius of hula hoop is 35 cm

circumference of the hula hoop =[tex]2\pi (radius)[/tex]

                                                    =[tex]2\pi (35)[/tex]

                                                    =[tex]70\pi[/tex]

distance covered in one rotation = circumference of the hula hoop

                                                       = [tex]70 \pi[/tex]

distance covered in 44 full rotation = [tex]44(70)\pi[/tex]

                                                           = [tex]3080\pi[/tex]

we have [tex]\pi =3.14[/tex]

distance covered in 44 full rotation =[tex]3080(3.14)[/tex]

                                                           = 9671.2 cm

distance covered in 44 full rotation = 9671 cm ( rounding to nearest cm)

Answer:

Distance covered by hula hoop in 44 rotations = 9671 cm

Step-by-step explanation:

In the given question,

                                   radius of the hula hoop (r) = 35 cm

                                                    and full rotation  = 44

Now,

       circumference of the hula hoop = 2[tex]\pi[/tex]r

Then,

        distance covered in one rotation = circumference of the hula hoop

       distance covered in 44 rotations = 44 × circumference of the hula hoop

                    Distance = 44 × 2[tex]\pi[/tex]r = 44 × 2 × 3.14 × 35 = 9671.2 cm

     Distance covered by hula hoop in 44 rotations = 9671 cm