[tex]\bf \begin{cases} 5x+7y=32\\ 8x+6y=46 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ 5x+7y=32\implies 7y=32-5x\implies \boxed{y}=\cfrac{32-5x}{7} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{substituting \underline{y} in the 2nd equation}}{8x+6\left(\boxed{ \cfrac{32-5x}{7}} \right)}=46\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{7}}{7\left( 8x+6\left( \cfrac{32-5x}{7} \right) \right)=7(46)} \\\\\\ 56x+6(32-5x)=322\implies 56x+192-30x=322[/tex]
[tex]\bf 26x+192=322\implies 26x=130\implies x=\cfrac{130}{26}\implies \blacktriangleright x=5 \blacktriangleleft \\\\\\ \stackrel{\textit{subsituting \underline{x} in the 1st equation}}{5(5)+7y=32}\implies 25+7y=32\implies 7y=7 \\\\\\ y=\cfrac{7}{7}\implies \blacktriangleright y=1 \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill (5,1)~\hfill[/tex]