Respuesta :

Answer:

B


Step-by-step explanation:

Let [tex]r[/tex] be the radius of one sphere.

  • Volume of sphere is [tex]V=\frac{4}{3}\pi r^3[/tex]

Since radius is r,  the height of the cylinder will be [tex]4r[/tex]

Also, the cylinder has the same radius as the sphere: [tex]r[/tex]


  • Volume of Cylinder is [tex]V=\pi r^2 h[/tex]

Plugging in the values we get: [tex]V=\pi (r)^{2}(4r)=4\pi r^3[/tex]


Ratio of volume of 1 sphere to volume of cylinder is:

[tex]\frac{\frac{4}{3}\pi r^3}{4\pi r^3}=\frac{\frac{4}{3}}{4}=\frac{4}{3}*\frac{1}{4}=\frac{1}{3}[/tex]

The ratio is 1:3

Answer choice B is right.

ACCESS MORE