Verify the identity.

cotangent of x divided by quantity one plus cosecant of x equals quantity cosecant of x minus one divided by cotangent of x

Respuesta :

Identity to verify:

[tex]\dfrac{\cot x}{1+\csc x}=\dfrac{\csc x-1}{\cot x}[/tex]

Recall that

[tex]\cos^2x+\sin^2x=1[/tex]

Divide both sides by [tex]\sin^2x[/tex] and we get

[tex]\cot^2x+1=\csc^2x[/tex]

or

[tex]\cot^2x=\csc^2x-1=(\csc x-1)(\csc x+1)[/tex]

So if we multiply the numerator and denominator of

[tex]\dfrac{\cot x}{1+\csc x}[/tex]

by [tex]\csc x-1[/tex], we get

[tex]\dfrac{\cot x(\csc x-1)}{(1+\csc x)(\csc x-1)}=\dfrac{\cot x(\csc x-1)}{\csc^2x-1}=\dfrac{\cot x(\csc x-1)}{\cot^2x}[/tex]

Then as long as [tex]\cot x\neq0[/tex], we can cancel terms to end up with

[tex]\dfrac{\csc x-1}{\cot x}[/tex]

and establish the identity.