Given the table below, determine if the data represents a linear or an exponential function and find a possible formula for the function.
![Given the table below determine if the data represents a linear or an exponential function and find a possible formula for the function class=](https://us-static.z-dn.net/files/dc7/5c5cee0c6eb4f7e71444a91002577868.png)
Answer:
Option b is correct.
Linear function ;
y =2x
Step-by-step explanation:
The formula y=f(x)=mx +c ......[1] is said to be a linear function. That means the graph of this function will be a straight line on the (x, y) plane, where m represents slope and b is the y-intercepts.
Consider any points from the table;
(1, 2) and (2, 4)
substitute these point in [1] we get;
for (1, 2)
⇒x = 1 and f(x) = 2 we have
2 = m + c
or
c = 2- m ......[1]
for (2, 4) we have;
4 = 2m + c .....[2]
Now, substitute equation [1] into [2] we get;
4 = 2m + 2 -m
Combine like terms;
4 = m + 2
Subtract 2 from both sides we get;
4 -2 = m +2 -2
Simplify:
2 = m or
m = 2
Substitute the value of m = 2 in [1] to solve for c;
c = 2 -2 = 0
c =0
⇒ y = 2x +0
y = 2x
therefore, the data in the table represents the Linear function and a possible formula for the linear function is; y = 2x
Answer:
Option B. y = 2x
Step-by-step explanation:
The given table in the question is
x 0 1 2 3 4
f(x) 0 2 4 6 8
As we know if the function is exponential or in the form of [tex]f(x) = (a)^{x}[/tex] then for x = 0 value of this exponential function will be f(0) = 1 but as per table f(0) = 0, so the given function is not an exponential function.
Therefore the given function is a linear function.
Linear function is always in the form of y = mx + c
Now f(0) = m×0 + c = 0
c = 0
f(1) = m×1 = 2
m = 2
Now we replace the values of m and c in y = mx + c
The equation will be y = 2x.
Option B. y = 2x is the answer.