Respuesta :

(1) is correct. [tex]\mathbf u\cdot\mathbf v=(-14)(0)+(8)(11)=0+88=88[/tex]

(2) is correct. I assume you just computed the dot product as above, but another way to do it is to notice that [tex]\mathbf v\cdot\mathbf v=\|\mathbf v\|^2[/tex] (that is, the dot product of a vector with itself is the square of its magnitude). Then since [tex]\|\mathbf v\|=\sqrt{1^2+2^2}=\sqrt5[/tex], we have [tex]\mathbf v\cdot\mathbf v=\|\mathbf v\|^2=5[/tex].

(3) is not correct. Since [tex]\mathbf u\cdot\mathbf u=\|\mathbf u\|^2=\sqrt{45}[/tex], we have [tex]\|\mathbf u\|=\sqrt{\sqrt{45}}[/tex].

(4) is correct.

[tex]2\mathbf u\cdot\mathbf v=2(\mathbf u\cdot\mathbf v)=2((-3)(1)+(6)(2))=2(-3+12)=2(9)=18[/tex]