Respuesta :
Answer:
( [tex]\frac{11}{2}[/tex], 8)
Step-by-step explanation:
Find the midpoint using the midpoint formula
midpoint = [ [tex]\frac{1}{2}[/tex](3 + 8), [tex]\frac{1}{2}[/tex](2 + 14)] = ( [tex]\frac{11}{2}[/tex], 8)
Answer: (5.5, 8)
Step-by-step explanation:
We know that midpoint (x,y) of a line XY having points having points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is given by :-
[tex]x=\dfrac{x_1+x_2}{2}\ ;\ y=\dfrac{y_1+y_2}{2}[/tex]
Then similarly, the midpoint of AB with endpoints A(3,2) and B (8,14) will be :_
[tex]x=\dfrac{3+8}{2}\ ;\ y=\dfrac{2+14}{2}\\\\\Rightarrow\ x=\dfrac{11}{2}\ ;\ y=\dfrac{16}{2}\\\\\Rightarrow\ x=5.5\ ;\ y=8[/tex]
Hence, the midpoint of AB with endpoints A(3,2) and B (8,14) = (5.5, 8)