Answer:
The probability that exactly 2 of the rolls is a sum of 7 will is 0.296
Step-by-step explanation:
The probability of rolling a sum of 7 when rolling two dice simultaneously is 0.167.
Let us assume that, A be the event that the sum is 7. So,
[tex]P(A)=0.167[/tex]
Binomial probability represents the probability that a binomial experiment results (i.e either success or failure or only two results) in exactly x successes.
[tex]b(x;\ n, p) =\ ^nC_x \cdot p^x \cdot (1-p)^{n - x}[/tex]
So the probability that exactly 2 of the rolls is a sum of 7 will be,
[tex]P(2) =\ ^{12}C_2 \cdot (0.167)^2 \cdot (1-0.167)^{12 - 2}[/tex]
[tex]=\ ^{12}C_2 \cdot (0.167)^2 \cdot (0.833)^{10}[/tex]
[tex]=66 \cdot (0.167)^2 \cdot (0.833)^{10}[/tex]
[tex]=0.296[/tex]