Respuesta :
ANSWER
The scale factor is
[tex]2.5[/tex]
EXPLANATION
The given triangle has vertices,
[tex]A(0,0),B(0,4),\:and\:C(6, 0)[/tex].
The vertices of the image triangle is,
[tex]A'(0,0),B'(0,10),\:and\:C'(15, 0)[/tex].
The scale factor is given by
[tex]k = \frac{image \: length}{object \: length} [/tex]
So we can use any of the corresponding sides to determine the scale factor,
[tex]k = \frac{|A'B'|}{ |AB|} [/tex]
[tex]k = \frac{ |10 - 0| }{ |4 - 0|} [/tex]
[tex]k = \frac{ |10| }{ |4 |} = \frac{10}{4} = 2.5[/tex]
Or
[tex]k = \frac{|A'C'|}{ |AC|} [/tex]
[tex]k = \frac{ |15 - 0| }{ |6 - 0|} [/tex]
[tex]k = \frac{ |15| }{ |6|} = \frac{15}{6} = 2.5[/tex]
Or
[tex]k=\frac{|B'C'|}{|BC|}[/tex]
[tex]k = \frac{\sqrt{(15 - 0)^2+(0-10)^2 }}{\sqrt{(6 - 0)^2+(0-4)^2}}[/tex]
[tex]k = \frac{ 5\sqrt{13}}{2\sqrt{13}} = \frac{5}{2} = 2.5[/tex]
The correct answer is C
The scale factor is
[tex]2.5[/tex]
EXPLANATION
The given triangle has vertices,
[tex]A(0,0),B(0,4),\:and\:C(6, 0)[/tex].
The vertices of the image triangle is,
[tex]A'(0,0),B'(0,10),\:and\:C'(15, 0)[/tex].
The scale factor is given by
[tex]k = \frac{image \: length}{object \: length} [/tex]
So we can use any of the corresponding sides to determine the scale factor,
[tex]k = \frac{|A'B'|}{ |AB|} [/tex]
[tex]k = \frac{ |10 - 0| }{ |4 - 0|} [/tex]
[tex]k = \frac{ |10| }{ |4 |} = \frac{10}{4} = 2.5[/tex]
Or
[tex]k = \frac{|A'C'|}{ |AC|} [/tex]
[tex]k = \frac{ |15 - 0| }{ |6 - 0|} [/tex]
[tex]k = \frac{ |15| }{ |6|} = \frac{15}{6} = 2.5[/tex]
Or
[tex]k=\frac{|B'C'|}{|BC|}[/tex]
[tex]k = \frac{\sqrt{(15 - 0)^2+(0-10)^2 }}{\sqrt{(6 - 0)^2+(0-4)^2}}[/tex]
[tex]k = \frac{ 5\sqrt{13}}{2\sqrt{13}} = \frac{5}{2} = 2.5[/tex]
The correct answer is C