Respuesta :

When you have a negative exponent, you move it to the other side of the fraction to make the exponent positive.

For example:

[tex]x^{-2}[/tex] or [tex]\frac{x^{-2}}{1}=\frac{1}{x^2}[/tex]

[tex]\frac{1}{y^{-2}}=\frac{y^2}{1}[/tex]  or  y²



So:

[tex]5^{-2}=\frac{1}{5^2}=\frac{1}{25}[/tex]

Your answer is B

The correct evaluation of   [tex]5^{-2}[/tex]  is  [tex]\frac{1}{25}[/tex]

How to evaluate the expression?

  • We know that [tex]a^{-b}[/tex] can be written as  [tex]\frac{1}{a^{b} }[/tex]

∴ [tex]5^{-2}[/tex] can be written as  [tex]\frac{1}{5^{2} }[/tex]

So,   [tex]5^{-2}[/tex]  = [tex]\frac{1}{25}[/tex]

Option B is correct.

Find more about "Power and base" here https://brainly.com/question/7447978

#SPJ2